# Turn-Up the Volume

Electrical Noise Susceptibility Standards

Rich Spangenberg Edison EMC Engineer – Schneider Electric Raleigh, NC rich.spangenberg@schneider-electric.com





#### Agenda

**EMC Intro** 

**EM Disturbance Examples** 

**EM Coupling Mechanisms** 

**IEC Standard Intro** 

**Disturbance Phenomena & Classification** 

**Product Standard Example** 

**Disturbance Test Standards** 

Lab Test Bench Examples



#### Electro-Magnetic Compatibility - EMC

Overview

- Electro-Magnetic Compatibility (EMC) is the design and coordination of a component, subassembly or system for:
  - Withstanding external noise disturbances (susceptibility/immunity)
  - Limiting self-generated noise emissions (typically in the RF spectrum)
  - Aligning to the intended environment for equipment type (Residential, Commercial, Industrial)
- EMC Requirements can be enforced from:
  - Government jurisdictions (for example, FCC for USA, CE for Europe, CCC for China, etc.)
  - Standardization bodies and Industry associations (UL, ANSI, SAE, IEC, IEEE, NEMA, etc.)
  - Company internal practices (for customer satisfaction, completive edge and safety)
- EMC standards cover a wide spectrum of frequencies
  - DC, Line frequency (50/60Hz) and into GHz



#### **Electrical Disturbance Sources**

An Industrial environment is plagued with different electrical disturbances.

Some disturbances are generated from equipment or systems within the environment, like an Welders, VFD's, across the line motor controls, etc.

Other disturbances are received from sources external to the environment, like the power grid or radio towers.



Confidential Property of Schneider Electric | Page 4

#### Electrical Disturbance Example: Motor Starters & VFD's











Un



#### **Disturbance Phenomena**

Disturbances are the result of one or more <u>phenomena</u> related to current flow, electric field radiation, magnetic field coupling and EM wave propagation.

- The extent or level of disturbances "tend" to scale with factors like system voltage/current, switching occurrence rate, load inductance and component & cable density/proximity.
- Conversely, the disturbances are generally reduced by introducing separation between elements and establishing a "solid" ground/reference structure/system.



## **Electro-Magnetic Coupling Mechanisms**

How does noise get in to a component, subassembly or system?

#### Typically received through attached cables:

- 1) Conducted from connected equipment disturbances
- 2) Capacitively coupled from other cables with disturbance
- 3) Inductively coupling from other cables with disturbance
- 4) Common Mode Impedance coupled through ground system
- 5) Antenna coupled from Electric Fields
- 6) Loop coupled from Magnetic Fields
- 7) Lightning coupling into power grid
- 8) ESD directly on or in proximity to cables /devices
- 9) Artifacts in power system / grid (i.e. Harmonics, etc.)



#### Conducted from connected disturbances or loads

Examples include:

- Switching inductive loads like motors, relays, solenoids
- Large active converters like VFD's, Solar & welding equipment
- Distributed active loads for LED and Fluorescent lighting
- Small active loads like DC switch mode power supplies







#### Spectral Distribution of Typical Conductive Disturbances



Schnei

### Capacitive Coupling from other cables with disturbances

Cables that run in parallel will couple capacitively based on:

- dV/dt of disturbing cable (source)
- Proximity of the disturber to the victim (closer is worse)
- Length of the parallel cables (longer is worse)
- Height of the cables with respect to a ground referencing plane (further away is worse)
- Input impedance of the victim circuit (circuits with a high input impedance are typ. more vulnerable)
- Insulation of the victim cable (εr of the cable insulation), particularly for tightly coupled pairs



#### Inductive coupled from other cables with disturbance

Cables that run in parallel will couple inductively based on:

- dl/dt of disturbing cable (source)
- Proximity of the disturber to the victim (closer is worse)
- Length the parallel cables (longer is worse)
- Height of the cables with respect to a ground referencing plane (further away is worse) more so for HF region
- Input impedance of the victim circuit (circuits with a high input impedance are typ. more vulnerable)





## Common Mode Impedance Coupling into Ground System

#### Disturbance CURRENTs flow through ground system:

- Ground impedance produces voltage difference between devices
  - Typically appear as Common Mode voltage on signal lines
- Increases with current and dl/dt of disturbance
  - Ground impedance has resistive and inductive elements
- Can originate from
  - Lightning strikes
  - Fault currents
  - High 50/60 Hz ground currents
  - Improperly grounded/shielded active switching devices, especially VFD's





## Field to Cable Coupling from EM Fields

Cables behave as antenna based on:

- Field Strength (V/m) based on Power and Proximity of RF source
- Height of the cables with respect to a ground referencing plane (further away is worse)
- Input impedance of the victim circuit (circuits with a high input impedance are typ. more vulnerable)
- Alignment of cable length to RF wavelength

In order for a cable to act as a reasonable antenna to transmit or receive RF energy, the length must correspond to at least ¼ wavelength.

| Frequency | $\underline{\lambda}$ | $\lambda/4$ |
|-----------|-----------------------|-------------|
| 1MHz      | 300m                  | 75m         |
| 30MHz     | 10m                   | 2.5m        |
| 80MHz     | 3.75m                 | 93cm        |
| 100MHz    | 3m                    | 75cm        |
| 1GHz      | 30cm                  | 7.5cm       |

As seen above lower frequency requires much longer "exposed" cables in order to provide reasonable antenna action. Therefore short routings between devices only are affected by higher frequency RF.







## Field to Loop Coupling from EM Fields

Cables behave as Loop antenna based on:

- Field Strength (A/m) based on Power and Proximity of RF source
- Area of Loop (based on cable routing)

Electrica

• Input impedance of the victim circuit (circuits with a high input impedance are typ. more vulnerable)

Note1: Field to loop coupling occurs in RF, but also line frequency (50/60 Hz) when in close proximity to high current carrying conductors, like bus bars.

Note2: Devising magnetic "shielding" is generally much more involved than applying common electric field shielding techniques.



#### **IEC Standards**

Product

Going forward in this presentation we will focus on the IEC (International Electrotechnical Commission) family of immunity standards, which is a well coordinated system with over 25 years of development.



IEC immunity standards (or versions very similar) are being introduced in North America, Canada and Mexico as agencies like UL, ANSI, CSA, NOM want to address the ever worsening noise landscape and product/system inter-compatibility.

Intended



#### **Disturbance Phenomena & EM Classifications**

IEC 61000-2-5 Ed. 3 was released this year which covers:

- List of disturbance Phenomena
  - Low Frequency (LF) < 9kHz
    Conducted
  - High Frequency (HF) > 9kHz
  - ESD
- Classification of Environments
  - Residential
  - Commercial / Public
  - Industrial
- Assigning Phenomena and Disturbance Degree (Level) to Environments
  - Port by Port
- Mapping of Phenomena to Standard Test Methods
  - 61000-4-x series

| <b></b>                                                                         | Edition 3.0 201                                         |
|---------------------------------------------------------------------------------|---------------------------------------------------------|
| TECHNICAL                                                                       |                                                         |
| DEDODT                                                                          |                                                         |
| KLFUKI                                                                          |                                                         |
|                                                                                 |                                                         |
|                                                                                 |                                                         |
|                                                                                 | et er                                                   |
| BASIC EMC PUBLICATION                                                           |                                                         |
|                                                                                 |                                                         |
|                                                                                 |                                                         |
| Electromagnetic compatibility<br>Part 2-5: Environment – Descri<br>environments | (EMC) –<br>iption and classification of electromagnetic |
| Electromagnetic compatibility<br>Part 2-5: Environment – Descri<br>environments | (EMC) –<br>iption and classification of electromagnetic |
| Electromagnetic compatibility<br>Part 2-5: Environment – Descri<br>environments | (EMC) –<br>iption and classification of electromagnetic |
| Electromagnetic compatibility<br>Part 2-5: Environment – Descri<br>environments | (EMC) –<br>iption and classification of electromagnetic |
| Electromagnetic compatibility<br>Part 2-5: Environment – Descri<br>environments | (EMC) –<br>iption and classification of electromagnetic |
| Electromagnetic compatibility<br>Part 2-5: Environment – Descri<br>environments | (EMC) –<br>iption and classification of electromagnetic |
| Electromagnetic compatibility<br>Part 2-5: Environment – Descri<br>environments | (EMC) –<br>iption and classification of electromagnetic |
| Electromagnetic compatibility<br>Part 2-5: Environment – Descri<br>environments | (EMC) –<br>iption and classification of electromagnetic |
| Electromagnetic compatibility<br>Part 2-5: Environment – Descri<br>environments | (EMC) –<br>iption and classification of electromagnetic |
| Electromagnetic compatibility<br>Part 2-5: Environment – Descri<br>environments | (EMC) –<br>iption and classification of electromagnetic |

#### LF Disturbance Phenomena

|           |           |                      |                              | Basic Test    | 61000-2-5                   |                     |
|-----------|-----------|----------------------|------------------------------|---------------|-----------------------------|---------------------|
| Frequency | Form      | Coupling             | Phenomena                    | Standard      | Industrial Level            | Notes               |
| LF        | Conducted | Power Supply Network | Harmonics                    | 61000-4-13    | L3                          |                     |
|           |           |                      | Voltage Variations           | 61000-4-14    | L3: +10/-15%                |                     |
|           |           |                      | Voltage Dips / Interruptions | 61000-4-11    | Class 3: 300cycles          |                     |
|           |           |                      | Voltage Unbalance            | 61000-4-27    | L3: 3%                      |                     |
|           |           |                      | Voltage Frequency Variations | 61000-4-28    | L3: +/-1Hz                  |                     |
|           |           | Power Supply Coupled | Common Mode Voltages         | 61000-4-16    | L3: 10V                     | 15Hz-150kHz         |
|           |           |                      | Utility Signalling / Ripple  | 61000-4-13    | L1 < 9%Un                   | 0.1kHz - 3kHz       |
|           |           |                      | Control                      |               |                             |                     |
|           |           |                      | Induced LF                   | 61000-4-16    | L3 < 10V                    | СМ                  |
|           |           |                      | DC in AC network             | -             | -                           |                     |
|           |           | Signal and Control   | Induced LF (normal)          | 61000-4-16    | L3 < 10V                    |                     |
|           |           | Cabling              | Induced LF (Fault)           | 61000-4-16    | L3: 1kV                     |                     |
|           | Radiated  | LF Magnetic Field    | Power System Line Frequency  | 61000-4-8     | L3: 30A/m                   | Much higher if near |
|           |           |                      |                              |               |                             | bussway, etc.       |
|           |           |                      | Power System Harmonics       | 61000-4-8     | L3: (30A/m)/n <sup>tn</sup> |                     |
|           |           |                      | Misc. other                  | 61000-4-8     | L3: 0.15A/m                 |                     |
|           |           | LF Electric Field    | Power System Line Frequency  | see 61000-2-3 | L2: 1kV/m                   |                     |



#### HF Disturbance Phenomena

|           |                       |                    |                          | Basic Test | 61000-2-5                |                                  |
|-----------|-----------------------|--------------------|--------------------------|------------|--------------------------|----------------------------------|
| Frequency | Form                  | Coupling           | Phenomena                | Standard   | Industrial Level         | Notes                            |
| HF        | Conducted             | Direct to AC       | 2kHz - 150kHz            | 61000-4-19 | L4: 10V DM               | PLT/Signalling, DM               |
|           |                       |                    | 150kHz - 80MHz           | 61000-4-31 | L3: -40dBm/Hz DM+CM      | Broadband OFDM                   |
|           |                       | EM Field Coupled / | 10kHz - 150kHz           | 61000-4-16 | L4: 10V CM               |                                  |
|           |                       | Induced            | 0.15MHz - 150MHz         | 61000-4-6  | L4: 10V CM               | 30V for Switchyards              |
|           | Conducted             | On AC, DC, Signal  | Electrical Fast          | 61000-4-4  | AC 4kV CM, Other 1kV CM  | 5ns rise x 50ns half-decay       |
|           | Uni-Directional       |                    | Transients               |            |                          |                                  |
|           | Transient             |                    | Surges / Lightning       | 61000-4-5  | 4kV CM, 2kV DM           | 1.2us rise x 50us half-decay     |
|           |                       |                    |                          |            |                          | Different levels for other ports |
|           |                       |                    |                          |            |                          |                                  |
|           | Conducted Oscillatory | On AC, DC, Signal  | Ring Wave - 100kHz       | 61000-4-12 | 2KV CM, 1KV DM           | Inductive switching or           |
|           | Transient             |                    |                          |            |                          | lightning impulses               |
|           |                       |                    | Slow Damped Osc: 0.10    | 61000-4-18 | L2: 1kV CM, 500V DM      | Located in MV substation         |
|           |                       |                    | - 1MHz                   |            |                          | switching                        |
|           |                       |                    | Fast Damped Osc: 3 -     | 61000-4-18 | L4: 4kV CM               | Electrical Plants and HV         |
|           |                       |                    | 30MHz                    |            |                          | substations                      |
|           | Magnetic Field        | Entire System      | 8us x 20us current pulse | 61000-4-9  | L4: 300A/m pk            | Power plants, MV/HV              |
|           |                       |                    |                          |            |                          | substations                      |
|           | ESD (E&M Fields)      | Entire System      | Direct & Indirect        | 61000-4-2  | L3: 6kV contact, 8kV air |                                  |



#### Radiated RF Disturbance Phenomena

|           |           |          |                                 | Basic Test | 61000-2-5        |       |
|-----------|-----------|----------|---------------------------------|------------|------------------|-------|
| Frequency | Form      | Coupling | Phenomena                       | Standard   | Industrial Level | Notes |
| HF        | Radiated  | Entire   | Group 2 ISM bands               | 61000-4-3  | L4: 10V/m        |       |
|           | Modulated | System   | f < 30MHz:                      |            |                  |       |
|           |           |          | Amateur                         |            | L3: 3V/m         |       |
|           |           |          | СВ                              |            | L2: 1V/m         |       |
|           |           |          | АМ                              |            | L2: 1V/m         |       |
|           |           |          | 30MHz < f < 1GHz:               | 61000-4-3  |                  |       |
|           |           |          | Analogue services               |            | 3V/m             |       |
|           |           |          | Mobile units of phones          |            | 3V/m             |       |
|           |           |          | Base stations of phones Outside |            | 3V/m             |       |
|           |           |          | Base stations of phones Inside  |            | L5: 30V/m        |       |
|           |           |          | Medical/bio. telemetry          |            | L1: 0.3V/m       |       |
|           |           |          | Unlicensed radio services 1     |            | 1V/m             |       |
|           |           |          | Unlicensed radio services 2     |            | 10V/m            |       |
|           |           |          | Amateur radio > 30 MHz          |            | 3V/m             |       |
|           |           |          | Paging services/base            |            | 1V/m             |       |
|           |           |          | TETRA                           |            | 1V/m             |       |
|           |           |          | Walkie-Talkie                   |            | 10V/m @ 1m       |       |
|           |           |          | TV, FM                          |            | 10V/m @ 500m     |       |
|           |           |          | 1GHz < f < 6GHz:                | 61000-4-3  |                  |       |
|           |           |          | Mobile units of phones          |            | 10V/m            |       |
|           |           |          | Base stations Outside           |            | 3V/m             |       |
|           |           |          | Base stations Inside            |            | 30V/m            |       |
|           |           |          | Amateur radio                   |            | 3V/m             |       |
|           |           |          | Other RF services (1)           |            | 10V/m            |       |
|           |           |          | Other RF services (2)           |            | 3V/m             |       |
|           |           |          | UWB                             |            | 0.3V/m           |       |
|           |           |          | f > 6GHz:                       | 61000-4-3  |                  |       |
|           |           |          | Amateur radio                   |            | 3V/m             |       |
|           |           |          | Other RF items (3)              |            | 10V/m            |       |
|           |           |          | Other RF items (4)              |            | 0.3V/m           |       |
|           |           |          | UWB                             |            | 0.3V/m           |       |
|           |           |          | Other RF items (6)              |            | -                |       |

Confidential Property of Schneider Electric | Page 20

Schneider Gelectric

## **Example Product Standard**

- Product Standards define environmental, electrical, constructional, functional, safety and verification test (including EMC) requirements for a particular product type / family.
- The goal is to deliver consistent product function and performance in alignment with the customer expectations and intended environment.

Overall Product/System

| Environmental<br>phenomenon              | Reference<br>standard | Test               |             | Test<br>level | Test<br>set-up | Normative<br>items | Performance<br>criteria |
|------------------------------------------|-----------------------|--------------------|-------------|---------------|----------------|--------------------|-------------------------|
| Electrostatic                            | IEC 61000-            | Co                 | ontact      | ±4kV          | Table          | 1                  | P                       |
| discharge                                | 6-2                   |                    | Air         | ±8kV          | 38             |                    | D                       |
| Radio-                                   |                       |                    | 2,0-2,7 GHz | 1 V/m         |                |                    |                         |
| Fleetre                                  | IEC 61000-            | 80% AM,            | 1,4-2,0 GHz | 3 V/m         | Table          | 4                  |                         |
| magnetic field<br>Amplitude<br>modulated | 6-2                   | 1kHz<br>Sinusoidal | 80-1000 MHz | 10 V/m        | 39             |                    | A                       |
| Power                                    | IEC 61000-            | 6                  | 0 Hz        | 30 A/m        | Table          | 2, 3               |                         |
| magnetic fields                          | 6-2                   | 5                  | 0 Hz        | 30 A/m        | 40             |                    | A                       |

Table 32 - Enclosure port tests, Zones A and B



Life Is (

#### From IEC 61131-2: Programmable Logic Controllers

#### **Example Acceptance Criteria**

#### Table 31 – Criteria to prove the performance of a PLC-system against EMC disturbances

| Performance criterion |                                                                                                                                                                                                                   |                                                                                                                      |          |  |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------|--|
| Criterion             | Operation                                                                                                                                                                                                         |                                                                                                                      |          |  |
| cinterion             | During test                                                                                                                                                                                                       | After test                                                                                                           | 1        |  |
| A                     | The PLC-system shall continue to operate<br>as intended. No loss of function or performance,<br>according to PFVPs (2.5)                                                                                          | The PLC-system shall continue to operate<br>as intended                                                              | ]<br>  ( |  |
|                       | Degradation of performance accepted                                                                                                                                                                               |                                                                                                                      | 1        |  |
| в                     | Examples: analogue values vary within<br>manufacturer-specified limits, communication<br>delay times vary within manufacturer-specified<br>limits, flickering on HMI display, etc.<br>No change of operating mode | The PLC-system shall continue to operate<br>as intended. Temporary degradation of                                    | <br>  (  |  |
|                       | Examples: loss of data or uncorrected errors in<br>communication, unintentional state changes of<br>digital I/O which are seen by the system or test<br>set-up, etc.                                              | performance must be self-recoverable                                                                                 |          |  |
|                       | No irreversible loss of stored data, according<br>to PFVPs (2.5)                                                                                                                                                  |                                                                                                                      |          |  |
| С                     | Loss of functions accepted, but no destruction of<br>hardware or software (programme or data)                                                                                                                     | The PLC-system shall continue to operate as<br>intended automatically, after manual restart or<br>power off/power on |          |  |

- Acceptance Criteria can be shaped by the anticipated service continuity for the product, as in a substation or hospital.
- The level of disturbance and/or rate of occurrence might be low in certain applications, but since service continuity has to be very high, the acceptance criteria will be stringent.
- For industrial control applications, maintaining proper logic state is critical as it is tied to process control.
- For electrical safety products, earth leakage detection, overload and fault protection should be maintained.



## **IEC Disturbance Test Standards**

The intent of an disturbance test standard is to provide a description of the disturbance source and how to apply / couple it to the product/system in a uniform fashion.

The test standard does include general definitions of Acceptance Criteria, however they are not related to any particular product/system function.

Detailed Acceptance Criteria are placed in the "Product Standard" along with Test Levels, Durations, Port Definitions and unique Set-up requirements (if applicable).

| NORME<br>INTERNATIONALE                                  | CEI<br>IEC                                                 |
|----------------------------------------------------------|------------------------------------------------------------|
| INTERNATIONAL<br>STANDARD                                | 61000-4-1<br>Deuxième édition<br>Second edition<br>2000-04 |
| PUBLICATION FONDAMENTALE EN CEM<br>BASIC EMC PUBLICATION |                                                            |

Compatibilité électromagnétique (CEM) -

Partie 4-1: Techniques d'essai et de mesure – Vue d'ensemble de la série CEI 61000-4

Electromagnetic compatibility (EMC) -

Part 4-1: Testing and measurement techniques – Overview of IEC 61000-4 series



#### **Disturbance Test Standard List**

61000-4-2 ESD

61000-4-3 Radiated electromagnetic field

61000-4-4 EFT/Burst.

61000-4-5 Surge

61000-4-6 Conducted disturbances by RF fields

61000-4-7 Harmonics and Inter-harmonics Guide

61000-4-8 50/60 Hz magnetic field

61000-4-9 Pulse magnetic field

61000-4-10 Oscillatory magnetic field

61000-4-11 Voltage dips and interruption

61000-4-12 Oscillatory waves "ring wave".

61000-4-13 Harmonics & mains signaling

61000-4-14 Voltage fluctuations

61000-4-15 Flicker meter Confidential Property of Schneider Electric | Page 24

61000-4-16 Conducted disturbances 0 - 150 kHz 61000-4-17 Ripple on DC power supply. 61000-4-20 TEM cells 61000-4-21 Reverberation chambers 61000-4-23 HEMP radiated disturbance 61000-4-24 HEMP conducted disturbance 61000-4-25 HEMP tests for equipment and systems 61000-4-27 Unbalance in three-phase mains 61000-4-28 Variation of power frequency 61000-4-29 Voltage dips, interruptions on DC power ports 61000-4-30 Measurement of power quality parameters 61000-4-31 AC Mains Broadband Disturbances (New) 61000-4-39 Radiating Close Proximity Devices (New) Life Is On

## Source Definition and Coupling to EUT

Each standard test tries to represent a particular phenomena, typically by defining a disturbance source (characterized by source impedance and wave shape), an occurrence rate and coupling means.

Although some test "levels" are defined in simple "voltage" and "current" quantities in the standard, the **interaction** of the "source" with the Equipment Under Test (EUT) will create a <u>unique</u> energy transformation profile (absorbed / reflected / passed-on) dependent on the unique characteristics of the product/system.

A system with a low impedance will interact quite differently with the test standard source than one with a high impedance. The interaction will hopefully be "engineered" by the product design team, and not left for chance.



#### **Recreating Disturbances in the Lab**

A significant portion of the standard defines the test set-up, including items like cable lengths, distance to ground planes, coupling/decoupling devices, etc.

Without set-up restrictions, the RF and current paths would vary significantly from site to site.

#### EUT ground connection through M1 to additional plane in this test EUT (CN) AE EuT (Elevated ground reference plane EUT (Elevated ground reference plane EuT (CN) AE EuT (Elevated ground reference plane

#### 61000-4-3 Radiated Immunity



Confidential Property of Schneider Electric | Page 26

61000-4-6 Conducted Immunity



# Example EMC Test Benches @ Schneider Raleigh 17025 EMC Lab

1. Sources/Generators

2. Coupling & Decoupling Means

3. EUT

4. Local Environment: Chamber, Reference Ground Plane (RGP) or open air



#### 61000-4-3 RF Immunity Chamber





#### **Other Test Benches**





#### 61000-4-20 RF Immunity in GTEM Chamber











# Life Is On Schneider